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Abstract 

 

 
 

 

In August 1859, Bernhard Riemann, 32 years of age, became a corresponding 

member of the Berlin Academy. There, it was customary to produce a publication on 

such occasion. He handed in a paper titled “On the Number of Primes less than a 

given Quantity”. This paper has been keeping Mathematicians busy, worldwide for 

almost 150 years now. It contains a hypothesis, known as the “Riemann Hypothesis” 

which is, after Fermat’s last Theorem has been proved in 1993 regarded as the 

greatest unsolved problem of Mathematics. The Riemann Hypothesis is: “All non-

trivial zeroes of the zeta function have real part one-half!” My aim is to explain the 

underlying Maths, especially the Riemann Zeta Function, so that a general 

understanding of the Hypothesis can be achieved. Although there are “real-world” 

applications of the Riemann Zeta Function as well, I will focus on the theoretical 

properties only. A short historical overview will be given at the end as well as the 

original paper Riemann’s and other related material. 
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1. Prime Numbers 
 

1.1 Introduction 
 

Definition: Consider ΝΝΝΝ, the set of natural numbers. A number ΝΝΝΝ∈x  that divides 

exactly into a number ΝΝΝΝ∈n  is called a factor. Every natural number has 1 and itself 

as factors, called trivial factors. All other factors, if they exist are called proper 

factors. A prime number is a natural number, greater than 1
∗
 that has no proper 

factors.  

 
 

Here is a list of the first 100 prime numbers: 

 
2      3      5      7      11     13     17     19     23     29  

31     37     41     43     47     53     59     61     67     71  

73     79     83     89     97     101    103    107    109    113  

127    131    137    139    149    151    157    163    167    173  

179    181    191    193    197    199    211    223    227    229  

233    239    241    251    257    263    269    271    277    281  

283    293    307    311    313    317    331    337    347    349  

353    359    367    373    379    383    389    397    401    409  

419    421    431    433    439    443    449    457    461    463  

467    479    487    491    499    503    509    521    523    541 

  (Table 1.1) 
  

 

Are there infinitely many prime numbers? Euclid proved about 300 B.C. that there are.  

 

Theorem 1.1 : There are infinitely many prime numbers. 

 

Proof: Suppose n is a prime number. Let 1)...321( +⋅⋅⋅⋅= pm . Then m does not 

divide exactly by any ∈< npn   , ΝΝΝΝ.  .  .  .  The remainder will always be 1 and 

pqqqm <∧Ν∈≡      such that  )(mod1 . This implies that m has either no proper 

factors, which implies that m is a prime number itself, or its smallest proper factor is 

greater p. Since every natural number’s smallest factor is a prime number, it follows 

that there are infinitely many prime numbers.  

 

 

 

Theorem 1.2 : Any natural number can be factored as a product of one or more 

primes. 

 

(can be proved by induction) 

 

 

                                                
∗ Why is 1 not considered a prime number? 1 has no proper factors! The answer is that it is just more convenient 

not to consider 1 as being prime. Most of the theorems regarding natural and prime numbers would have to be 

rephrased to: “…for all primes greater than 1…” A similar example is the definition for factorials. Consider the 

Taylor series: ∑ −
n n

n

n

af
ax

0

)
!

)(
()(  Since division by zero is not defined )0( =n  we let 1!0 = . 



 

 

 

1.2 The Prime Counting Function 
 

 

Definition 1.3 : The prime counting function denoted by )(nπ is defined to be the 

number of prime numbers less than or equal to n. 

 

 

 

If  we extend table 1.1 we see that between: 

 

          1 -  100 :  25 primes 

      401 – 500 :  17 primes 

      901 – 1000 :  14 primes 

999901 – 1000000 :   8  primes 

                         (Table 1.2) 
 

The distribution of prime numbers seems to decrease. But Euclid’s proof implies that 

it will never reach zero. 

 

 

 

 
        (Figure 1.3)          [Wolfram Research Inc (1999)] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

1.3 The Sieve of Eratosthenes 
 

In 230 B.C. Eratosthenes of Cyrene (nowadays in Libya) discovered what is known as 

the Sieve of Eratosthenes, a method for finding Prime Numbers: 

 

1. write down an ordered list of integers, starting with 2  

2. remove every second number greater 2 

3. let p be the next lowest number in the list 

4. remove every th
p  number greater p from the list, starting at p if it hasn’t 

already been removed 

5. repeat from 3.  

 

After applying this procedure the list will only contain prime numbers. In fact, using 

this algorithm which can easily be implemented with any programming language, we 

are able to find all prime numbers less than 2)1( +p  unless they are very large, 

because then the computing power required would be extremely high.  

 

 

Example: 

 
2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  

 

2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32 

 

2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32 

       (Figure 1.4)  

 

We have found all primes less than 36! (p=5 at our last step)   

 

 

1.4 The Prime Number Theorem 

 

 
What do we know about prime numbers so far?  

    

• We can factor each natural number as a product of prime numbers  

• There are infinitely many prime numbers 

• We can create a list of as many prime numbers as we want using the Sieve 

Method (although not feasible for very large numbers) 

• We know about the prime counting function and can therefore compute the 

number of primes less than a given quantity (e.g. in Matlab using the command 

primes(n)) 

 

 

 

 

 

 

 



 

 

Mathematically the prime counting function is not very satisfactory, because it is 

based on simply counting prime numbers. It is desirable to find an exact way to 

mathematically describe the distribution of prime numbers. The Prime Number 

Theorem, which exists in different versions allows us to approximate π(n).  

 

 

Theorem 1.4 :  In the neighbourhood of a big number, the probability of a natural 

number being prime is approximately  
)log(

1

n

 . 

The n
th

 prime number is approximately  )log(nn ⋅ . 

)log(
)(

n

n
n ≈π  

 

 

 

An even better approximation can be achieved using the Log-Integral function. 

 

 

Definition 1.5 :  The Log-Integral function, denoted by )(xLi is given by: ∫
x

dt
t

0
)log(

1
 

 

 

As n gets large, 
)log(

)(
n

n
nLi ≈ . This implies that the prime counting function is 

approximately equal to the Log-Integral function for large n. That is: )()( nLin ≈π  

 

This is referred to as the Prime Number Theorem as well, depending on the author. 

 

 

Theorem 1.6 : The relative error in the approximation )()( nLin ≈π  approaches zero 

as x tends to infinity.
∗
   

 

                                                
∗
 See (Edwards, 1974, p.76) for the proof. 

 



 

 

The following graph shows the functions involved in the Prime Number Theorem: 

 

 

 

 

 

 

 

 
  (Figure 1.5) 
       

 

 

 

 

Note that for large n )(nπ  is bounded above by )(nLi and bounded below by 
)log(n

n
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2. Riemann’s Zeta Function 

 

 

 
2.1 Definition and the Euler Product Formula 

 

 
Definition 2.1 : The Riemann Zeta function (pronounced “Zeta of s”) is the infinite 

series: 

                             ...
4

1

3

1

2

1
1

1
)(

1

++++==∑
∞

=
sss

n
s

n
sζ  

 

 

 

The following theorem states what is known as the Euler Product Formula. 

 

Theorem 2.2 : Zeta of s is equal to the product over all primes p of 
)1(

1
s

p
−−

.  

That is: 

 ∏ −−
=

p
sp

s
1

1
)(ζ  

 

 

 

On the left hand side we have an infinite series and on the right hand side an infinite 

product over prime numbers. This means that prime numbers are related to the Zeta 

function in some way. Section 3 will reveal more details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Proof for the Euler Product Formula:  

 

(i) ...
7

1

6

1

5

1

4

1

3

1

2

1
1)( +++++++=

ssssss
sζ  

multiply both sides by 
s2

1
 

(ii)  ...
12

1

10

1

8

1

6

1
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1

2

1
)(

2

1
++++++=⋅

sssssss
sζ  

 

subtract (ii) from (i) to eliminate all even-numbered terms from the RHS 

 

(iii)  ...
13

1

11

1

9

1

7

1

5

1

3

1
1)()

2

1
1( +++++++=⋅−

sssssss
sζ  

multiply both sides by 
s3

1
 

(iv)  ...
33

1

27

1

21

1

15

1

9

1

3

1
)()

2

1
1(

3

1
++++++=⋅−⋅

ssssssss
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subtract (iv) from (iii) to eliminate all multiples of 3 from the RHS 

 

(v)                           ...
19

1

17

1

13
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1
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1
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Note the similarity to the Sieve of Eratosthenes. When continuing this process, one 

eliminates the prime numbers with all its multiples from the RHS while they appear 

one the LHS of the original equation. 

 

Now, let p(n) be the n
th

 prime number. Then, as ∞→n  : 

 

1)()
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1
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1
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1
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1
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s
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∏ −−−=
p

sps 1)1()(ζ             q.e.d. 

 

 

 

 

 

 



 

 

 

2.2 Plotting the Zeta function for 1>s  

 

...
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Consider the p-series ∑
∞

=1

1

n
pn

as special cases of the Zeta function. Since the p-series is 

known to converge for 1>p , it follows that the Zeta function converges for 1>s  as 

well. 
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   (Figure 2.1)  

 

Note the asymptotic behaviour at s=1. For s=1 the Zeta function reduces to the 

harmonic series which is divergent. 

 

 

2.3 Plotting the Zeta function for 1<s  

 
The p-series is defined for real numbers only and is only a special case of the Zeta 

Function. The Zeta function is a complex valued function. Its domain is therefore not 

confined to the real numbers. But before we consider the complex plane, let’s look at 

the values of )(sζ  for 10 << s  and real negative numbers (for which the p-series is 

divergent). 

 

 

 



 

 

 

How can we “extend” the domain to values between zero and one? A process called 

analytic continuation is required. 

 

Consider another function first: 

Let ...
6

1

5

1
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1
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1
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sη  

               ...)
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[ )(2)( DBDCBADCBA +⋅−+++=−+− ] 

 

Remember from Calculus II that this kind of algebraic manipulation of alternating 

infinite series is only possible if the series is absolutely convergent. Hence we need to 

restrict ourselves to apply this manipulation to s-values greater zero only (because 

)(sη is only absolutely convergent for 1>s ). 

 

)()
2

1
21()( ss

s
ζη ⋅⋅−=  

 

Then 

1
2

1
1

)(
)(

−
−

=

s

s
s

η
ζ          , which we can evaluate for: 0>s  

      [based on Derbyshire  (2003)] 
 

The expression on the right hand side is defined for all 1, 0 ≠> ss  , because the 

series defining )(sη  converges for 0>s by the alternating series test. We take this as 

the definition for 0   )( >ssζ . 

 

Now we can compute the Zeta function for all positive real numbers not equal to one. 

 

 

To extend the domain of the Zeta function to negative values requires more 

sophisticated techniques. See Appendix A for further details on the following theorem. 

 

In 1749 Euler suggested a formula which Riemann proved in his 1859 Paper that 

relates )(sζ  and )1( s−ζ , known as the functional equation of the zeta function.  

 

 

Theorem 2.3 :  The functional equation of the zeta function is given by: 

)()!1(
2

1
sin2)1(

1
ss

s
s

ss ζππζ ⋅−⋅







⋅

−
⋅⋅=− −−  

 

This formula allows us to compute values of the Zeta function for negative values of s. 

For example, to compute )15(−ζ , plug in 16=s on the RHS of the equation. 

 

 



 

 

 

Here is a partial plot of the Zeta function for negative values of s: 
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               (Figure 2.2)                   
 

Theorem 2.4 : All negative even integers are zeroes of the Zeta function. 

 

Proof: (informal) To calculate negative even integers of the Zeta function, one has to 

plug in odd positive integers greater one into the functional equation. Then the term 









⋅

−
π

2

1
sin

s
 will become zero, since the sinus of every even multiple of π is equal to 

zero.  

 

These zeroes of the Zeta function are called trivial zeroes. The Riemann Hypothesis 

involves non-trivial zeroes which will be covered in the next section.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

3. The Riemann Hypothesis 

 
“All non-trivial zeroes of the zeta function have real part one-half!” 

 

This section will combine some of the results of sections one and two. In order to gain 

a basic understanding of the hypothesis some additional definitions and methods are 

introduced in the next sub-section. Proofs and detailed explanations of most of the 

following are beyond the scope of this report and are omitted. 

 

     

3.1 The underlying Mathematics 
 

Definition 3.1 : The Moebius Function is defined by 
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(Figure 3.1)      [Wolfram Research Inc (1999)] 

 

 

The Zeta function is related to the Moebius function by: 
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Let π(n) be the prime counting function defined in 1.3. 

 

 

Definition 3.2 : Let J(x) be defined by 

...)(
4

1
)(

3

1
)(

2

1
)()( 432 ++++= xxxxxJ ππππ  

 

Note that the RHS of this equation does not represent an infinite sum, because as soon 

as 0)(2 =→< nn xx π . 

 

 

Using a process called Moebius Inversion it is possible to express π(x) in terms of J(x). 

Then, 

...)(
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1
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Applying the Moebius Function gives: 

∑ ⋅=
n

n xJ
n

n
x )(

)(
)(

µ
π  

 

 

It is also possible to express J(x) in terms of the Zeta function: 

∫
∞

−−⋅=
0

1
)()(log

1
dxxxJs

s

sζ  

 

We can express the prime counting function in terms of J(x) and we can express J(x) 

in terms of the Zeta function. Considering that, we can express the prime counting 

function in terms of the Zeta function. This means that a close study of the Zeta 

function will reveal the nature of the distribution of prime numbers. This is one of the 

remarkable results of Riemann’s paper. It combines the domain of Number Theory 

(the prime counting function) with the domain of Analysis (the Zeta function) to a 

branch of Mathematic called Analytic Number Theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

3.2 Non-trivial Zeroes 
 

As we have seen in the last sub-section, the Zeta function is related to the prime 

counting function, because both are related to J(x). Let’s therefore have a closer look 

at this function. It can also be expressed in the following way: 
[see Appendix C for more details]  

∑ ∫
∞

⋅−⋅
+−−=

β

β

x
ttt

dt
xLixLixJ

log)1(
2log)()()(

2
 

 

Let’s analyse the single terms of the above expression: 

 

- )(xLi  is the log-integral function defined in 1.4  

- 2log  is just a number  

- ∫
∞

⋅−⋅
x

ttt

dt

log)1( 2
  

gets very small for large x, referring to prime 

distributions for large numbers, the region of interest 

 

The crucial term therefore is: ∑
β

β )(xLi . 

Let ∑=
β

βξ )()( xLix  

Riemann transformed the Zeta function )(sζ  to a function involving )(xξ . The trivial 

zeroes of the Zeta function “disappear” after this transformation. But the non-trivial 

zeroes of the Zeta function, which are the subject of the Riemann Hypothesis, 

correspond exactly to all possible roots β of )(xξ . The sum in the above expression is 

taken over all these roots, that is over all non-trivial zeroes of the Zeta function. 

 

So, by the Riemann Hypothesis, if setting bi ⋅+=
2

1
β  (real part one-half), one can 

find all non-trivial zeroes of )(sζ , provided it is true.  

 
[see Appendix C for more details] 

 

 

In 1914 G.H. Hardy proved that the Zeta function has infinitely many non-trivial 

zeroes whose real part is indeed one-half. But this doesn’t prove the hypothesis. 
 

 

 

 

 

 

 

 

Here, having provided the main concepts for a basic understanding of the Riemann 

Hypothesis, I will stop the discussion and finish with the following two graphs.  
 



 

 

The position of the complex zeroes can be seen by plotting the contours of zero real 

and imaginary parts, as illustrated below. The zeroes (indicated dots) occur where the 

curves intersect. 
 

 

 
  (Figure 3.2)     [Wolfram Research Inc (1999)] 

 

 

 

A plot of the Zeta functions for s on the critical line: bs ⋅+= i
2

1
 

 

 
 (Figure 3.3)      [Wolfram Research Inc (1999)] 

 



 

 

The Functional Equation of the Zeta Function 

 

 

To derive the Functional Equation of the Zeta Function (given in section 2.3) which 

can be used to evaluate the Zeta Function for negative s-values, it is necessary to 

introduce some further techniques and special functions first. It involves the Γ-

Function and a special case of the θ-Functions which in turn uses Poisson Summation. 

I wish to acknowledge the help of Dr. Shaun Cooper for this part. 

 

 

Poisson Summation Formula: 

 

 

Suppose )(xf  is a function which decays sufficiently rapidly as ±∞→x . Then f is 

smaller than 
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x
 for some 0>δ for large x . 
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F⇒  is periodic with period one and therefore has a Fourier Series expansion: 
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θ    -Functions: 

 

Let 0 , )(
2

>= − sexf sx π . Then )(xf  decays sufficiently rapidly. After applying 

Poisson Summation: ∑∑
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Now consider the θ -Function with 0=x . 
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Riemann defined the following functions based on the above. These results will be 

used later to derive the Functional Equation of the Zeta function. 
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The ΓΓΓΓ-Function: 
 

Definition:  ∫
∞
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Properties:   
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Reflection Formula: 
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Duplication Formula: 
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The Zeta Function: 
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This is one version of the functional equation of the Zeta function relating    

s)-(1   and   )( ζζ s . To change it to the form given in section 2.3 the reflection 

formula and the duplication formula for the gamma function need to be applied.  
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Bernhard Riemann and Mathematics in the 19
th

 Century 
 

 

Bernhard Riemann is a Mathematician from the nineteenth Century. He lived in a 

period considered the most important period of modern Mathematics in which the 

most fruitful and remarkable discoveries and developments had taken place. 

 

Moritz Cantor’s Die Geschichte der Mathematik is probably the most extensive 

history of Mathematics book, consisting of three volumes summing up to 

approximately 3600 pages. This work ends with the year 1799 but consists of 

everything dating back to the ancient Egypts, about 2000 B.C. where Mathematics 

first evolved. To tell the story of Mathematics of the time after 1800 is believed to 

take about 20 volumes of similar size, that is about 17000 pages [Bell, 1937], even 

though people like Newton, Euler and Leibniz died before that time.  

 

Riemann was born in 1826 in Hannover, Germany. As a pupil he focussed on 

studying classical subjects like Theology, Hebrew and Philosophy. But soon his talent 

for Mathematics had been discovered by the director of the Gymnasium Riemann 

attended. From him he borrowed Legendre’s Theorie des Nombres (859 pages) and 

returned it after 6 days saying “That is certainly a wonderful book. I have mastered it” 

[Bell, 1937].    

 

In 1846 Riemann enrolled at the University of Goettingen to study Theology 

following the encouragements of his father. However, he attended lectures in 

Mathematics from the first term on and finally changed to the Faculty of Mathematics 

with his father’s permission. There, among his lecturers were Gauss and Stern. 

[Turnbull 1998] 

 

In 1847 Riemann moved to Berlin where he studied under Jacobi, Eisenstein and 

Dirichlet. Influenced particularly by Eisenstein, he studied the theory of complex 

variables and Elliptic functions. In 1849 Riemann returned to Goettingen to study 

towards his Doctorate, supervised by Gauss. He submitted his thesis about complex 

variables in 1851 in which he developed the idea of what is nowadays known as 

Riemann Surfaces. Gauss’ described Riemann after the examination of his thesis as 

having a “… gloriously fertile originality” [Turnbull 1998] 

 

In the following three years Riemann worked for his habilitation, a thesis leading to a 

professorship at German Universities required for lecturing. He submitted his thesis in 

1854 and held a lecture as part of this process “On the hypotheses that lie at the 

foundations of geometry” Gauss was apparently the only one in the audience who 

could appreciate the depth of Riemann’s work. [Turnbull 1998] 

 

In 1859 Riemann was appointed to the chair of Mathematics in Goettingen and 

shortly after that he was elected to the Berlin Academy where he handed in his 

famous paper On the Number of Primes less than a given Quantity. Among his 

supporters in Berlin was K.T.W. Weierstrass. 

 

Riemann died in 1866 only 40 years of age. 
 

 



 

 

A poem on the zeta function 
 

Where are the zeros of zeta of s?  

G.F.B. Riemann has made a good guess;  

They're all on the critical line, saith he,  

And their density's one over 2 p log t. 

 

This statement of Riemann's has been like a trigger,  

And many good men, with vim and with vigour,  

Have attempted to find, with mathematical rigour,  

What happens to zeta as mod t gets bigger. 

 

The efforts of Landau and Bohr and Cramer,  

Littlewood, Hardy and Titchmarsh are there,  

In spite of their effort and skill and finesse,  

In locating the zeros there's been little success. 

 

In 1914 G.H. Hardy did find,  

An infinite number do lay on the line,  

His theorem, however, won't rule out the case,  

There might be a zero at some other place. 

 

Oh, where are the zeros of zeta of s?  

We must know exactly, we cannot just guess.  

In order to strengthen the prime number theorem,  

The integral's contour must never go near 'em. 

 

Let P be the function p minus Li,  

The order of P is not known for x high,  

If square root of x times log x we could show,  

Then Riemann's conjecture would surely be so. 

 

Related to this is another enigma,  

Concerning the Lindelöf function mu sigma.  

Which measures the growth in the critical strip,  

On the number of zeros it gives us a grip. 

 

But nobody knows how this function behaves,  

Convexity tells us it can have no waves,  

Lindelöf said that the shape of its graph,  

Is constant when sigma is more than one-half. 

 

There's a moral to draw from this sad tale of woe,  

which every young genius among you should know:  

If you tackle a problem and seem to get stuck,  

Use R.M.T., and you'll have better luck. 

 

 
Words by Tom Apostol 
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